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6 Transport Across Irregular Interfaces:
Fractal Electrodes, Membranes and Catalysts

Bernard Sapoval

6.1 Introduction

How do irregular surfaces operate? This chapter is devoted to this general
question. which has been revived by the concept of fractal geometry.

Many natural or industrial processes take place through surfaces or across
the interfaces between two media. In this manner the roots of a tree exchang
water and inorganic salts with the earth through their surface. Oxygen in the
air is exchanged with blood hemoglobin through the surface of the pulmonary
alveoli. These are natural processes.

In order for a car to start. the battery must deliver enough power to turn the
engine, and a large current is needed for this purpose. In fact, the electrochem
ical process which supplies the current takes place at the interface between the
electrode and the electrolyte. At this interface, the current is determined by
clementary physical and chemical processes which limit its density. To obtain
a large current it is necessary to increase the area of the exchange surface. and
it is for this reason that porous clectrodes are used. A porous medium is onc
which has a maximum surface area for a given volume. We know that fractal
geometry qualitatively meets this criterion (the Von Koch curve has infinite
length even though it is entirely contained within a finite surface [6.1-3)).

In this last example. the transport of the materials reacting in the electrolyvie
is due to electric current but it is possible to envisage similar processes involving
no clectric charge. Let us take the example of the lung: in the upper bronchial
tube. air circulates hydrodyvnamically. but beyond this. in the alveoli. no air
Hows. The transport of oxvgen to the cells which coat the pulmonary alveoli,
where the gas exchange takes place. is a phenomenon of diffusion (see Sect. 3.2).
Close to the membrane. the oxygen concentration in the air falls as the oxvgen

< Fig. 6.0. Photograph of a soft coral. Solomon Islands. by Carl Roessler. Courtesy of
Roessler
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is trapped, and it is the diffusion of oxygen molecules in air which finally brings
further molecules into contact with the membrane. Pulmonar alveoli have an
irregular space-filling distribution [6.4-7] and fractal geometry can be used as
a guideline.

We will show that these two problems, the current in a battery and breath-
ing. can be solved using the same equations. The same applies to the absorption
of a fertilizer through the roots of a plant, and other examples suggest that na-
ture itself has perfected these systems by giving them a fractal geometry: “The
problem of energy interchange in trees can be simplified by considering the
tree as a system in which as large an area as possible must be irrigated with
the minimum production of volume while at the same time guaranteeing the
evacuation of absorbed energy” [6.8]. :

Again the same type of problem arises in heterogeneous catalysis. Solid
catalysts are employed widely in the chemical and petroleum industries to
promote many important chemical reactions. Porous catalysts are preferred
since they can provide an enormous surface in a very small volume (up to
several hundred square meters per gram) [6.9]. Reactants diffuse into the porous
structure, reaction takes place, and the products formed diffuse back out to the
ambient fluid.

The problem of transport to and across an irregular interface is thus a
problem of general interest. It is of concern in studies in very different fields.
We do not claim here that all irregular interfaces are indeed fractals. We first
consider the question: if the interface is fractal what do we know about the
transfer across such a surface? Once we have the answer to that question, we
will sec that it is possible to understand irregular interfaces in general. In the
past fiftcen years this field of research has been moving rapidly [6.10-60] but
only recently can it be considered as settled and open to applications. It could
appear in the future that the main applications of these results will exist in
fields which are far from electrochemistry itself. Today, we can consider the
tollowing five conclusions as confirmed, and this is what [ am going to describe
and to discuss in this chapter.

L. The frequency response of a fractal electrode depends on the electrochem-
ical regime.

2. In the so-called diffusion limited regime. the impedance of a fractal elec-
trode depends directly on its Minkowski-Bouligand dimension. This will
be shown in the following.

3. In the so-called blocking regime the response of a fractal electrode generally
exhibits a nontrivial Constant Phase Angle (CPA) behavior. This behavior
15 directly related to the fractal hierarchy but the response of self-affine and
selt-similar electrodes are very different. In particular they do not depend
on the fractal dimension in the same manner.

-+ The macroscopic response of fractal interfaces is not proportional to the
microscopic transport coefficients but is a power-law function of these pa-
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rameters. This general property may be important because it may alter
experimental measurements of the microscopic transport parameters.

5. We will show that there is an exact correspondence between the ac and dc
electrical response of an electrode, the diffusive response of a membrane,
and the steady-state yield of a heterogeneous catalyst of the same geometry.
This is perhaps the most important result of this chapter. It unifies and
widens the scope of applications of the study of transport to and across
irregular interfaces. In particular we will see that the results can be applied
to a semi-quantitative understanding of the absorption of oxygen into the
blood in the terminal part of the respiratory apparatus of mammalians. In
that sense the blocking electrode problem can be considered as a “model
problem” offering the possibility of impedance spectroscopy measurements
on model electrodes. It allows for a test of the various approximations which
are necessary to understand simply the behavior of irregular interfaces. It
is a means by which to validate ideas which may have their main future
applications outside of the field of electrochemistry.

6.2 The Electrode Problem
and the Constant Phase Angle Conjecture

The problem of transfer across a fractal surface was first addressed in the study
of the impedance of batteries. It has been observed for a long time that rough or
porous electrodes do not have a simple frequency response even in the small-
voltage linear regime [6.61-66]. The equivalent circuit of a cell with planar
electrodes of area .S in principle consists of a surface capacitance C in parallel
with the Faradaic resistance Ry. both being in series with the resistance of
the electrolyte R,j. Figure 6.1 represents the electrical equivalent circuit of an
electrochemical cell with planar electrodes.

The Faradaic resistance Ry is equal to (rS™!) where r is the inverse rate of
electrochemical transfer at the interface, for instance in a redox reaction such

as
Fo'* +¢7 e Fe?*. (6.1)

In the absence of such a process the Faradaic resistance R is infinite and
the electrode is said to be blocking or ideally polarizable. The resistance of the
electrolyre R is proportional to the electrolyte resistivity p and depends upon
the geometry of the cell. The surface capacitance C = ~S is proportional to the
surface area and to the specific capacitance per unit area ~. It corresponds to
the charge accumulation across the interface. In the presence of such a Faradaic
reaction it may happen that diffusion of the species in the liquid plays a role:
such a case is termed a diffusive regirne and appears at very low frequencies.

In fact. the impedance of rough or porous electrodes is generally found to
be of rhe form
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Fig.6.1. (a) Equivalent circuit of a planar electrode in the small-voltage linear regime. (b)
Experimental evidence for constant phase angle behavior obtained with metallic contacts on
a solid clectrolyte: sodium B-alumina [6.12]. Real and imaginary parts are measured as a
function of frequency. The insert is an impedance diagram in the complex plane; it exhibits
CPA behavior

TT lrlllli

Z~(w)™", 0<n<l, (6.2)

In series with a pure resistance R, which represents the resistance of the elec-
trolyte. An example of such an experimental behavior is shown in Fig. 6.1b.
This behavior is known as the constant phase angle or CPA behavior, because a
plot of =ImZ(w) versus ReZ(w) in the complex plane gives a straight line with
a “constant phase angle” with the z axis (as shown in the insert). There is a
constant phase angle between the real and the imaginary parts. A smooth sur-
face exhibits n = 1 (and a 7/2 angle) whereas n decreases when the roughness
of the surface increases.

Le Méhauté first proposed considering a rough or porous electrode as frac-
ral. and many studies, the majority of them theoretical. have been devoted
to this subject. These publications have mainly considered the properties of a
blocking or ideally polarizable electrode. One should, however, keep in mind
that there exist other interpretations of the CPA behavior which are not based
on geometry. A suitable distribution of relaxation parameters on a flat surface
can possibly account for CPA behavior [6.66 67]. Of course, both hierarchical
seometry and these distributions can occur in real systems. We are interested
here only in the role of the geometry because it is applicable to other phenom-
ehas transport across membranes and heterogeneous catalysis.

At rhe beginning of these studies the emphasis was on searching only for a
relation between rhe CPA exponent and the fractal dimension through scaling
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arguments. We will see below that we now have analytical results from theory
not only about exponents but also describing the response as a function of
the geometrical and physical parameters which determine the system behavior.
Although these results cannot be considered as “exact” from their derivation,
which bears on a few approximations, they are in very good agreement with nu-
merical simulations and explain quantitatively from first principles experiments
on model electrodes.

6.3 The Diffusion Impedance and the Measurement
of the Minkowski-Bouligand Exterior Dimension

We start with a consideration of a blocking electrode with a very small Faradaic
transfer resistance. We recall that an electrochemical reaction (Faradaic pro-
cess) may become diffusion limited whenever indifferent charged species (i.e.,
lons which are not participating in the electrochemical reaction) are present in
the electrolyte simultaneously with the electroactive participating species. If a
large concentration of indifferent charge species exists and a small potential step
is applied, the interface capacitance will be charged after a very short time, be-
cause the solution is highly conductive, and the externally applied potential will
then appear directly across the interface. A large initial Faradaic current will
then flow. but this will change the concentrations of the electroactive species
in the vicinity of the interface. Because the solution is highly conductive no
electric field will be left and the only driving force bringing new electroactive
species to the interface will be the concentration gradient, through a diffusion
process. Consequently, a corresponding diffusion impedance appears in series
with the (small) Faradaic resistance of Fig. 6.1a.

The concentration varies locally from ¢y to ¢y + dc(zx,t). The concentra-
tion profile dc(z. t) will be governed by the diffusion equation in the sinusoidal
regime (6c(z.t) = dc(x)e™*), which for a planar electrode is

d?(8c(x)) ‘

w(dc(x)) =D o (6.3)
where D is the diffusion coefficient. The electrochemical current will be
1 de(x 9 .
J = —:(JDM = :(?(z'u.'D)l/‘éc(;c =0), (6.4)

dx ey
where dc(r = 0) is the variation of concentration at the surface. and z is the
number of elementary charges per ion. Physically. this means that the charge
passing through the interface during a cyele corresponds to the number of
species at a concentration dc(r = 0) contained in a “diffusion layer™ of thickness
Ap ~ (D/w)P?. The associated admittance ¥) can be caleulated by relating
the concentration de(x = 0) ro the local potential by the Nernst law (see for
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example [6.55] and references therein). For a planar electrode of area S one
finds

Yp = ST(D/iw)?iw. (6.5)

The quantity I” is a capacitance per unit volume; we call it the specific diffusive
capacitance [6.55]. This relation tells us that the diffusive admittance is simply
that of the capacitance of the diffusive volume SAp ~ S(D/w)/2. This can be
readily extended to fractal surfaces.

The general form of the diffusion admittance at a fractal electrode can be
found if we know the charge I'V(Ap) which is contained in the vicinity of the
fractal electrode surface up to a distance of the order of Ap ~ (D/w)/2. We
then neced to know the volume V(Ap) located within a distance Ap from the
fractal surface. This is precisely what is measured by the exterior Minkowski-
Bouligand dimension (here “exterior” means exterior to the electrode).

Let us now define this dimension. Let ¢ be a (small) positive length. Let
V. denote the volume of electrolyte which lies within the distance e of the

electrode. Then 57
d; = lim (3— = ) (6.6)

Ine

e—0

This definition is illustrated in Fig. 6.2.

Fig. 6.2. Decfinition of the exterior Minkowski-Bouligand dimension. The contour of the
electrode is the solid line. The electrode is shown in gray. The contour is “fattened” in the
clectrolvte by taking all points a distance smaller than e away from the clectrode (thin line).

The volume V, is proportional to €37 for an ordinary fractal surface

It is known that. for specific geometries. d; may differ from the Hausdorff
dimension of the common boundary of the electrode and electrolyte [6.68].

From (6.6) the volume V(Ap) located within a distance 1 of the fractal
varies as .1:,{)—(”- hence like w7 =72 The diffusion admittance of the fractal
clectrode is then [Ypl ~ TV(D/w)Y 2w ~ @ =072,

More precisely. if a fractal electrode has a macroscopic surface S. the content

. . . v . vl p 7 ¢ 3—dd .
of the neighboring volume V{1,) is equal to bdf/“.l[) I and one obtains

v " - 2 = i3 oo
}/I) ~ brif/_D(§ i)/ = W,(t/f 1), ) (()‘)
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Note that the response is given by a noninteger power law related to the fractal
geometry. The above discussion fails at very low frequencies where the diffusion
length may be larger than the size of the fractal electrode and reaches the size
of the electrochemical cell. (For a solution of the problem in dc conditions see
below.)

The very general reason allowing one to directly relate the ac diffusive
regime to the fractal dimension is that, due to the presence of the support
electrolyte, the volume of the electrolyte is electrically equipotential. The elec-
trochemical potential is nonuniform on a scale of the order of the diffusion
length. The reason for this nonuniformity is the electrical potential drop at
the exchange surface. Since the electrical potential is uniform, this excitation
is constant over the surface. As a consequence, the perturbation occurs only
very close to the surface and the flux at some point on the surface is a local
response. The ionic diffusion mechanism itself always takes place in the Eu-
clidean space occupied by the electrolyte and is not perturbed by the presence
of the fractal surface, which acts only as a boundary. It is therefore not sur-
prising that this flux can be related to some dimension through a fattening
of the surface as done in the Minkowski-Bouligand approach. More generally,
the content of a Minkowski-Bouligand layer of thickness Ap permits one to
describe the impedance of any irregular, rough or porous. fractal or nonfractal
interface in the diffusive regime. These effects have been thoroughly studied
together with the time response (Cotrell law) of these electrodes and verified
by numerical simulations and experiments (6.46,47,49-51,55].

On the other hand, if the resistance of the electrolyte plays a role, as in
the case discussed previously of blocking electrodes, the electrolyte is no longer
equipotential and the response is no longer local. In that case, the admittance is
not related to the local properties of the interface as characterized by the fractal
dimension. This will be shown first in a specific case where the response of a
model electrode can be calculated exactly: the generalized modified Sierpinski
electrode. Our calculation would also be applicable to a catalyst of the same
geometry as will be shown later.

6.4 The Generalized Modified Sierpinski Electrode

This clectrode is the metallic electrode shown in Fig. 6.3. It is made in a
decimation process. In the first step, a square pore of side ag is made in the
clectrode of side . Then. at cach step. N smaller pores of side ag /v are added
around a pore of a given size and so on. Here N = 4 and o« = 3. A cross section
of the electrode is a modified Sierpinski carpet with a fractal dimeusion in the
plane d;, = In.N/Ina. We consider the case where:
1. The other electrode of the electrochemical cell is planar. It is very near the
fractal electrode so that one can neglect the resistance of the thin laver of
electrolvte between the two electrodes.
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Fig. 6.3. Picture of the generalized modified Sierpinski electrode in front of a'planar counter
electrode. The fractal object that we consider is made by a decimation process. In the first
step a square pore of side ag and depth L is made in the electrode of side a. Then, at each
step. .V smaller pores of side ag/a and depth L/a; are added around a pore of a given size,
and so on. Here N = 4 and a = 3. For this model electrode, exact results can be obtained
for various electrochemical regimes [6.55]

2. The metallic volumes are assumed to have zero resistance and the external
surface is coated with an insulating material so that we neglect conduction
through this surface.

3. The bottom of cach pore is insulating. All the pores are linked in parallel
and the admittance is simply the sum of the admittances of all the pores.

4. The lengths of the pores also scale (either as the side of the pores or
differently). Hence, the largest pore has a length L. the next pores have
a length L/cv, and so on. For example, thinner pores can be shorter than
thicker pores.

This clectrode really has a self-affine geometry (see Chap. 7). It has an infinite
surface arca included in a finite volume. Its exterior Minkowski-Bouligand di-
mension can be easily caleulated as we now show. We have N7™ pores of length
LaZ" and of side agoe™. The fact that the electrode occupies a finite volume
implies N < ov?. To calculate the dimension. we choose a, small positive length
¢ and separate the pores with sides smaller and greater than e. For this we find
the order of decimation v of the pore side €. The quantities € and v are related

by
a Vg, < €/2 < a Vay. (6.8)
We then have
< v—1
W e Z AV”(L;';L(({')(Y:)_”' + de Z N"agL(car,) ™", (6.9)

n=ur n=q0

There are two possibilities. First .V > .. Then the second term is of the
order of magnitude of e NYagL(cva-)™". and the first term is equivalent to
NPaglia o))", Remembering (6.8). v is of order of In(ag/€)/ In v and we got
Vo~ s sV o e nd from (6.6)
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InN ~Ina,
lna '

Note that if a; = 1, all the pores have the same depth and d; = 1+In N/Ina.
In the case where N < aq,, the dimension is 2. As a result of the simple geom-
etry, several electrochemical regimes have been calculated for the generalized
modified Sierpinski electrode [6.55].

We show now that the generalized modified Sierpinski electrode exhibits
CPA response in the blocking regime, but the CPA exponent is not a func-
tion of the fractal dimension. The pores are branched in parallel and the total
admittance is simply the sum of the admittance of the individual pores,

e = (6.11)

n>0

dp =1+ (6.10)

In a first approximation, a single pore can be considered as a resistance R, in
series with a capacitance Cy, if one neglects propagation effects. The quantities
R, and C,, are the resistance and the surface capacitance of a pore of order n.
These pores have a length L/(a,)™ and a side ag/a™. Hence:

R = p(L/aZ) (a5 26 (6.12)

and

Cn = 4v(ag/a™)(L/al). (6.13)
There are N™ such circuits in parallel for each stage of decimation. It can be
easily verified that at a given frequency w the admittance is dominated by the
pores with R,,C,w = 1, that is. those for which the order of decimation is n(w)
such that [6.55]

4py(L? fag)(afal)™ ) = ! (6.14)
o .\ _ In(ap/4pywL?)

For these pores the resistive and capacitive admittances are equal and the
admittance is then of the order of

Y| ~ N'”'(“’)R.,,,(w) ~ (ag/pL)(ao/4vpL?) 1w, (6.16)

with _InN+lna, -2lnw

n=

2Ina, — Ina (5}
Hencee there exists a CPA response but the exponent 7 is not a function of the
fractal dimension (6.10) of the interface. This constitutes an ezact result. In
that very special geometry there is no direct relation between the dimension and
the phase angle. Note that the function (6.16) is a nontrivial function of . o
~. L. and w. The admittance is dominated by the n(w) pores of characteristic
frequency w and the energy is dissipated in these particular pores. On such
fractal interfaces the power dissipation is nonuniform.

Keddam and Takenouti [6.31] have studied the frequency response of a two-
dimensional Koch electrode made of anodized aluminum. That is a case where
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10kHz ThHz
01M Na, SO,

Fig. 6.4. Experimental map of the ac electric potential for two different frequencies in a
fractal clectrochemical cell, after Keddam and Takenouti (6.31,74]. The potential is 1 on the
bottom horizontal line. Equipotential lines are shown for 10kHz in the left part and for 1Hz
in the right part. The electrode is made of an oxidized aluminum profile and is blocking in
the NaySOy solution where the measurement is made. One observes a stronger penetration
of the ac potential in the structure at lower frequencies. This is related to the higher value
of the surface capacitive impedance at low frequencies. These maps indicate qualitatively
that the different parts of a fractal object do not play the same role in the blocking regime
[6.60.83.84.86]. This must be contrasted with the diffusive regime response that we have
studied above and where the active zone is evenly distributed on the surface as shown in

Fig. 6.2

the electrode is really a “blocking™ electrode. They have studied the potential
distribution in that case and have demonstrated that the equipotential lines
in the electrolyte penetrate the fractal object in a nonuniform manner which
depends on the frequency. This is shown in Fig. 6.4.

The idea of a nonuniform role of the fractal surface was independently
discussed by Wang [6.60] and will be discussed below.

6.5 A General Formulation of Laplacian Transfer
Across Irregular Surfaces

We deseribe now a simple way to consider and to compute the impedance of
irregular interfaces using a simple and general argument [6.69]. It applics to
any irregular electrode and in particular to self-similar electrodes. In addition
It permirs us to compute the response from the geometry of the interface only.

In the eleerrochemical cell the potential obevs the Laplace equation [6.70.71].
The method is ro substiture the problem of Laplacian transfer across the real
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Fig. 6.5. Electrochemical cell with a self-similar electrode. The irregular electrode of interest
(the working electrode in electrochemistry) has an inner cut-off £ and size or diameter L. The
arrow indicates the orientation of the normal. This chapter deals with the electrochemical
problem in which the applied voltage is Vy on the planar counter electrode and 0 on the
working electrode. An equivalent diffusion problem exists in which a planar source of diffu-
sion is maintained at a constant concentration co and particles diffuse towards an irregular
membrane with finite permeability W

electrode (which presents a finite transfer rate) by a problem of a Laplacian field
obeying the Dirichlet boundary condition (V =0) but with a different geome-
try, obtained by coarse graining. The coarse-graining scale is directly related to
the transport coefficients of both the electrolyte and the electrode. Using gen-
cral properties of Dirichlet-Laplace fields one finds an effective screening factor
which gives the size of the zone being really active on the initial geometry, and
hence its admittance.

To calculate the response of an electrochemical cell with an irregular elec-
trode. as in Fig. 6.5. one has to solve the Laplace equation (AV = 0) which
governs the electric potential distribution in the electrolyte with a boundary
condition that reflects the electrochemical process at the working surface. This
surface possesses a finite admittance and what is known about the properties
of Laplacian fields on surfaces without impedance (with V' = 0) cannot be ap-
plied directly. This is unfortunate since the Dirichlet-Laplace problem on an
irregular electrode has been thoroughly studied. at least in d = 2. More specif-
ically an important theorem. Makarov's theorem. describing the properties of
the charge distribution on an irregular (possibly fractal) electrode capacitor
can be applied [6.72]. This theorem states that the information dimension of
the harmonic measure (for instance the electrostatic charge for the capacitor
case) on a singly connected object in d = 2 is exactly equal to 1. This very spe-
cial property of the Laplacian field can be illustrated in the following manner:
whatever the shape of an capacitor clectrode. the size of the region where the
charge accumulates is proportional to the overall size (or diameter) L of the
clectrode nder a dilation transformation.
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This result generalizes, to an arbitrary geometry, a fact which has been
known for a long time for simple geometries. It has a profound meaning in
terms of the screening efficiency of the irregularity and this is what we use. For
this, we consider the simplest description of an irregular surface: the length of
the perimeter L, divided by its size or diameter L [6.73].

S=1L,/L. (6.18)

This number S has a direct significance: it measures the screening efficiency
of the irregularity for Dirichlet-Laplacian fields: If whatever the geometry the
active zone has a size L, then as

L=L,/S (6.19)

the factor 1/S can be considered to be the “screening efficiency” due to the
geometrical irregularity. This is the physical significance of Makarov's theorem.
(Note that when we discuss fractal lines we consider only physical objects with
a finite inner cut-off ¢ so that S is always finite.)

The above result cannot be applied directly to the screening of the cur-
rent in an electrochemical cell because the boundary condition on the elec-
trode is not V' = 0. In the simplest linear regime, a “flat” element of an elec-
trode surface with unit area behaves as a resistor r across a capacitance 7.
The Faradaic resistor r describes the finite rate of the electrochemical reac-
tion if the interface is not blocking. Due to charge conservation, the current

JL = =V(r~1+ jyw) crossing the electrode surface must be equal to the Ohmic

current j, = =V V/p reaching it from the bulk (p being the electrolyte resis-

tivity). As a consequence the de boundar condition can be written as
VIV V=u with A=qr/p * (6.20)

This boundary condition then introduces a physical length scale A in the
problem. The procedure that we describe now is to switch from the real geome-
try obeying the real boundary condition to a coarse-grained geometry obeying
the Dirichlet boundary condition. with the coarse-graining depending on A.
In that new geometry we will apply equation (6.19) to obtain the effective
screening. hence the size of the working zone of the real electrode.

To be more specific we deseribe this analysis for rhe situation of an electrode
in a planar d = 2 cell as represented in Fig. 6.5. Consider a part i of the
surface wirh a perimerer leneth L, .. If the thickness of the cell is b, this surface
possesses an admittance Y, = hL,,/r. The admittance to aceess the surface is of
order Y. = b/p because in d = 2 the admirtance of a square of clectrolyte with
thickness b is equal to b/ whatever its size. Depending on the size of the region
¢ there exists two situations: Y, < YiecorV > Yo If Ly, is small. Y, < Y,
and the current is limired by the surtace admittance. On the contrary if L,.,is
Larve enough we have Y, > Y, . and rhe current is limired by the resistance to
access the surface. Bur in rhe larter situarion we are. in a Hrst approximarion.

* The length A is equivalent to the lenght k.  defined by Carl Wagner, J.
Electrochem. Soc., 98, 116 (1951). See also T. P. Hoar and J. N. Agar, Disc.
Faraday Soc., 1, 162 (1947) and C. Kasper, Trans. Electrochem. Soc., 77, 353
(1940); 78, 131 (1940; 812, 153 (1942)
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back to the case of a pure Laplacian field with the boundary condition V' = 0.
The idea then is to coarse-grain the real geometry to a scale L; = L4 such that
the perimeter L, 4 in a region of size (diameter) L.y is given by the critical
condition Y; = Y. or
Lp,cg = A (621)
A coarse-grained site is then a region with a perimeter equal to A = r/p.
Because of its definition, such a region can be considered as acting uniformity.
At the same time, in the new coarse-grained geometry we are dealing with a
pure Dirichlet Laplacian field and we can then use the screening factor 1/S,
of this object to find its effective active surface. Note that if we did the coarse-
graining to a scale larger than L4 it would no longer be correct to consider a
uniform distribution of the current within a macrosite and that consequently
we would not be able to find the size of the active zone. If NV, is the number of
yardsticks of length L., needed to measure the perimeter of the electrode, the
number S of the coarse-grained object is simply

Seg = Np/N, (6.22)

where N = L/L., is the number of yardsticks needed to measure the size (or
diameter) of the electrode. The quantity 1/S,., is the effective fraction of the
surface which is active and the admittance of the electrode will simply be given
by

Y (r) =Yu(r)/Seq, (6.23)
where Y,(r) would be the surface admittance of a “stretched” electrode with a
length L. In this frame the number S, of the coarse-grained object determines
directly how the admittance of the total surface is reduced by the screening
effects. If we consider a self-similar electrode with an inner cut-off £ and a
fracral dimension ds there exists a simple relation between the size L., of the
coarse-graining and the length of the perimeter:

A=0(L.,/0)"Y. (6.24)

Using (6.21-24) one obtains for the admittance of a self-similar electrode of
macroscopic size L and thickness b the value

Y = L(¢p)t=ds)/dsp=1/dy (6.25)

The general (nonblocking) ac response is obtained by substituting r by
(= + jyw) !

Y(w) = Lh({p) =40/ dr (=1 o jmiy s, (6.25a)

For blocking electrodes with =1 =0 we have

Y (e T ) WSS e, (6.26)
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The dc form of this result has been verified by numerical simulation and
the ac form has been verified by experiments on model electrodes as described
in detail in reference [6.74].

At very low frequency, where the size of the coarse-grained site is larger
than the diameter of the system, the admittance is limited by the capacitance
of the total surface and

Y(w) =Y (w) = t(L/) (jyw): (6.27)

The high-frequency fractal regime and the low-frequency capacitive regime
meet at a cross-over frequency w, where the size of the coarse-graining is the
size or diameter L of the electrode itself. For a blocking electrode A = (pyw)~!
and (6.24) gives for this crossover

we = (pv€) THL/E)~ . (6.28)

The above simple arguments are general and permit. as we show below.
the computation of the response of irregular electrodes even for nonscaling
geometries. First we show how this method can be used from the image of the
electrode. All we need is to have a “Hexible” measuring rod of length A4 = r/p
(or [A{w)| = 1/p~w for blocking electrodes) that we use to measure the length
of the perimeter from one end to the other. To perform this task we need a
number .V, of flexible rods. Note that here, we do not measure the irregular
object with a rigid yardstick as usually considered in measuring fractals. On
the contrary, starting at one end of the irregular object, we map the object with
the flexible rod of length /1 and the distance in real space between the ends of
this rod cetermines a distance L;. This length is a “local yardstick” associated
with /1 and the local geometry. Then we place a second flexible rod of length
A from the end of the first rod and find 1 new yardstick length L, and so on.
The total number of rods (of length A) needed to map the object is Np and
the number S of the coarse-grained electrode is Np/N where N is the number
of yardsricks which measure the size. The real electrode has a perimeter N,.1
and a total admittance Y,(r) = Npdb/r = Npb/p. Dividing by S as in (6.23)
we find

Y = Nb/p. (6.29)
We then obtain that the modulus of the admittance of an irregular electrode
in d = 2 is simply the square admittance b/p multiplied by the number of

vardsticks needed to measure the size (or diameter) L of the electrode. This
shows that deterministic and random fractals with the same inner and outer
cut-offs and the same fractal dimension have the same response. The reason
i5 now trivial because what really matters is the total number of macrosites.
whatever their individual size. which may be distributed over some range of
SIZ08.

We now apply this method to nonscaling geometries as shown in Fig. 6.6.
The de admittance of the perimeter surface is now Y, = (N + NbA/r with
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Fig. 6.6. Example of an electrode with a nonscaling geometry. This electrode is build by the
association of a planar electrode of length L’ with a self-similar electrode of length L’

N, =L'/Li, and N = (L"/L{;)% . To obtain the admittance of this electrode
we have to divide this value by S of the entire electrode. The macrosites do
not have the same size if they correspond to the planar part, for which the
vardstick is simply L7, = A, or if they corresponds to the fractal part for which
the yardstick is given by Ly, = 26A/0)Y% from (6.24). The total number
of vardsticks on the object is now N, = N, + N;', whereas the number of
yardsticks needed to measure the size is N = N + N” with N’ = L'/L,, and
N = L"/L7,. Applying (6.23) with S = (N, + NJ)/(N"+ N") one finds for
the admittance ¥V = (N"+ N")b/p or Y = L'b/r + L”b(fp)(l‘df)/dfr‘l/df,
which is the sum of the admittances of the two electrodes in parallel.

This general argument then restores the essential property of Laplacian
transfer: the admittance of two electrodes in parallel is the sum of the individual
admittances. This indicates that this method is general. The ac response of
blocking electrodes is obtained by replacing r by (7yw)~!. Note that we have
used the number NV of vardsticks needed to measure the total size as equal to
the sum N’ + N of the number of yardsticks needed to measure the sizes of
the two different parts. If we wish to use equation (6.29) we have to use an
average vardstick (L,,) defined by Li{lay = L’/L’Cg + L”/Lg’g. The average
vardstick (L.,) must be obtained by this harmonic mean.

In the known cases of self-affine electrodes. such as the Cantor bar electrode
[6.35-40] or the Sierpinski electrode studied above, the pores have different
aspect ratios. For this case a coarse-grained bore can be still defined by ¥, =
Y.ce but not by Ly.cq = .1. As explained above in o somewhat different language
the impedance can be found from the total surface of these coarse-grained pores,
which are all accessible at the same time due to the particular geometry.

We then have shown how to find. from frst principles. the response of a
nonscaling irregular object. Apart from the image. all that is needed are the
values of the microscopic frausport coefficients (here. for instance. the elec-
trolvre resistivity and the Faradaic resistance). The same method will apply to
the equivalent problem of the steady-state diffusion rate towards an irregular
membrane with finite permeability 117 as indicared below.
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The simplicity of this method probably makes it a good candidate for the
study of the response of irregular electrodes in the nonlinear regime where
the local current across the electrode is related to the local voltage by a non
nonlinear relation j = f(V) [6.47,69,75].

The case of self-similar electrodes with 2 < df < 3 (in d = 3) has been
treated by an equivalent circuit method in [6.74] and gives, respectively, for the
high-frequency fractal and low-frequency capacitive regime

Y(w) = L¥(£p)( =2/ A0 (jy) /s =), (6.30)
and
Y(w) = C(L/0)Y (jow). (6.31)
The crossover frequency w, is now
we = (pv€) "N (L/O) . (6.32)

Note that in this case the crossover frequency occurs when the perimeter
of a cut of the fractal surface by a plane is equal to the length A. These the-
oretical predictions allow us to explain quantitatively the high-frequency and
low-frequency response of the electrode shown in F ig. 6.7 [6.76,77].

We have presented here a simple approach based on first principles. These
results have been verified by the existing numerical simulations in d = 2 and
permit us to understand quantitatively the experimental results in d = 2 and
d = 3. A different and more complex approach has been proposed in [6.78-82].
These more detailed studies present slightly different values for the exponent 7
= 1(2) /dy using a correlation exponent t(2) slightly < than 1. In this situation, one
should consider that the above results (6.25-28) and (6.30-32) allow us to grasp
the essential features of that question.

Another significant result from the equivalent circuit approach of [6.74]
and from [6.83.84.86] is the notion of information fractal and of active zomes.
The active-zone studies’ give a direct insight on the localization of the regions
which are effectively working and those which are passive for given physical
conditions. This is a further step in the detailed understanding of how irregular
interfaces operate in the linear regime. This notion could be of great help in the
understanding of how irregular interfaces operate in a nonlinear regime [6.69].

The above discussion about screening indicates that if one considers self-
affine electrodes in the case where the aspect ratio of the groves is smaller than
1 there is no effect and no CPA. The experiments of Bates, Chu, and Stribling
[6.13] are, from this point of view, experiments on self-affine electrodes with
small aspect ratios. From the discussion about S numbers in that case, the
response should be capacitive. This is why they do not obtain any relation
between fractal dimensions and the CPA exponents. In their case the CPA
may be due to microscopic effects.

[n this chapter we have assumed that no de polarization current is owing
in the svstem. which is far from being rhe case in very many practical elec-
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Fig. 6.7. Wood’s metal ramified electrode. This object is approximately 6 cm high and has
its =mallest branching in the range of 20um. It is a metallic moulding of the penetration space
of warer injected into plaster and was obtained by G. Daccord and R. Lenormand [6.77]. In a
blocking situation the admittance of this clectrode approximately obeys relations (6.30-32)
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trochemical situations. The presence of a dc polarization current would make
the (potential-dependent) Faradaic admittance vary from one point of the in-
terface to another. This would complicate the problem considerably, and most
probably the results would be affected.

6.6 Electrodes, Roots, Lungs, ...

The de admittance given by (6.25) is proportional to r=7. This result is not
trivial. It means. for instance, that dividing the surface resistance at the surface
of a porous electrode by a factor of two will not double the current. Also the
current is not proportional to the electrolyte conductivity but is a power law
of the conductivity. As a result. the macroscopic response coefficient across a
fractal interface is not proportional to the microscopic transport coefficients. A
power law depending on the geometrical hierarchy relates these factors. This
conclusion could have applications in several systems found in nature or those
built to have large-surface porous structures.

The same kinds of properties should be observed in the study of bulk and
membrane ditfusion that exists in biological or physiological fractal systems. We
now illustrate the correspondence between the above study and the description
of the flux of a neutral species across a membrane when the overall process is
limited by the diffusion from a source at a constant concentration. Consider
the marhematical problem of finding the de response in the electrochemical cell
of Fig. 6.8a.

The potentials are 1 on the counter clectrode and V = 0 on the electrode
of interest. As we have seen. the equaticns to be solved are the Laplace equa-
tion and the current equation in the bulk of the electrolyte with the boundary

Fig. 6.8a.b. Equivalcnce between the electrode problem and the membrance problem in the
sante neometrvy. If one replaces D by S by VoD by p= b and W by =1 bne obtains the
sanie mathematical problemn for i given gcometry
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condition for the electrical current normal to the surface. Instead of an elec-
trochemical problem we imagine the problem of the transfer of neutral species
diffusing across a membrane of the same geometry. Instead of a counterelectrode
as in Fig. 6.8a we imagine that some process maintains a constant concentra-
tion co of the species of interest. This is the situation of Fig. 6.8b. We call &
the flux vector at point z. There are two flow processes in our system. First,
diffusion, which in a steady state obeys Fick’s law,

¢ = —DVc(z), (6.33)

where ¢ is the concentration of the particles of interest and D is the diffusion
coefficient, as before. Together with the conservation law

dc
— ==V 34
Bt : (6.34)
this leads to the diffusion equation, which in a steady state is
Ac=0. (6.35)

Second. there is a transfer equation across the membrane.
b, = -We(x), (6.36)

where W is the probability per unit time, surface, and concentration of a par-
ticle crossing the membrane. In the last equation we have neglected a back
transfer, assuming that the concentration on the other side of the membrane
is maintained equal to zero by some forced flow mechanism (blood circulation
for example in the case of lungs). Provided that we replace ® by J, ¢ by V, D
by p~!, and W by -1, relations (6.33,35-36) are exactly equivalent to the dc
current and potential equation in the electrochemical cell. The same results do
then apply. If we define a diffusion admittance Yp by a linear relation between
the total flux ¢ and the concentration cy at the entrance of the system we
can write

dr = Ypey (6.37)

Note that one should not confuse the steady-state diffusion regime that we
study here and the so-called diffusion electrochemical regime that we have
discussed in Sect. 6.3. This last regime was the time-dependent response of the
electrode in the special case where the electric field is screened by the presence of
a large concentration of inert (indifferent) electrolyte. The equivalence that we
use here is between a steady-state diffusion regime and the Laplacian response
of an electrode with the same geometry.

By transposition of (6.30-32) to the steady-state diffusion case one obtains
a low-permeability regime with a diffusion admittance. which trivially is
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Yp = 2(L/OHW, (6.38)

and a high-mobility “fractal” regime with a diffusion admittance equal to
Yp = L2¢Wds=2)/(1=dy) plds=2)/(ds =1) 71/ (dg 1) (6.39)

Here also the macroscopic response is a power law of the transport coeffi-
cients D and W. The value of the length A is now A = D/W and the crossover
between the two regimes occurs when A

A=¢(L/o)4s=D, ¢ (6.40)

which is when the perimeter of a cut of the fractal surface by a plane is equal
to the length A.

Note that at crossover, the value of the membrane admittance needed is
equal to the value of the admittance to reach the surface, which, in d = 3 is
typically the (bulk) admittance of a cube of size L: Y5 = LD. The statement
that, at the crossover point, the value of the classical admittance of the fractal
membrane is equal to the access resistance is very simple. It may then be of more
general value and may apply to many irregular geometries. That is probably
why the above considerations seem to apply to the “acinus” of several animals,
as discussed now. although their real geometry is not a simple fractal [6.6.7].

The airways of mammalians are made of two successive systems, the
bronchial tree in which oxygen is transported with air and the terminal alveolar
system. called the acinus, in which the air does not move. In the acinus the
transport of oxygen towards the alveolar membrane is purely diffusive. In this
system the transport may be limited both by the (bulk) diffusion admittance
to reach the membrane and the admittance needed for the air of the membrane
itself as given by (6.38.39). In d = 3 the bulk admittance is equal to LD and
the total admitrance is

Yr = ([LD]"' + Yy hHL (6.41)

This admittance increases with the diameter L and large exchangers should
trivially be better exchangers. But the “best” exchange system should be that
for which it is not the admittance itself but the admittance per unit volume,
as the thorax vohume of animals is limited. The above discussion indicates that
the admittance per unit volume or specific admittance. defined as Yr/L? =
([LD]=1 + Y51~ /L?. varies as LY~ for small L and as L= for large L. If
the structure of the alveolar surface is dense. dy = 3 and the specific admittance
does not depend on the size of the fractal up to the critical size discussed above
but decreases with the power L2, From this discussion a geometry with a dense
(space filling with d; = 3) arrangement of alveolar surface of smaller size ¢, up
to a diameter L satistving condition (6.40) should be optimum because lower
losses i the higher airwavs ask for the larger size compatible with a large
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specific admittance. In that sense the “best possible acinus” size should be
that for which the perimeter of a cross section through the acinus should have
a length of the order of A. The physiological and anatomical data obtained
by E. Weibel [6.5-7] allows us to compare the above considerations with what
is observed in real lungs. The transport coefficients D and W governing the
diffusion of oxygen in air and its capture by the alveolar membrane are known
and it seems that the value of A (a few cm) is indeed close to the perimeter
length of a cross section through the acinus for several animals such as the
mouse, the rat. the rabbit, and the human. Although discrepancies exist, the
general agreement can be considered as satisfactory if one takes into account
the oversimplified model that is used [6.85].

It seems that these considerations can be extended to the gills of fish, in
which the geometry is regular. Because of the smaller diffusion coefficient of
oxygen in water, the value of .1 is of the order of a few tens of micrometers. The
size of the gills is comparable to that value. The gills generally have a regular
structure which corresponds to dy = 2 and not to d; = 3 [6.87]. In that case
the optimum value for L is equal to A, now of the order of tens of microns, as
observed.

6.7 Fractal Catalysts

The problem of heterogeneous reactions is of major importance in the chemical
industry. The old Wenzel’s law [6.88] states that. for heterogeneous reactions,
the larger the interface. the faster the reaction. “This is why in industry and in
the kirchen one grinds the material in order to speed up the reaction” [6.89].

If a chemical reaction is accelerated on the surface of a catalyst one should
use porous catalysts to increase the overall efficiency of the reaction. A num-
ber of questions arc raised by the dynamics of these complex processes. Very
frequently catalyst reactions exhibit noninteger order. Very often the activity
of a catalyst follows a power law as a function of the size of the catalyst grain
[6.90-94].

Of course catalysts are not necessarily fractal. but the fractal geometry gives
a possible hint to the understanding of some part of the catalytic process in
specific cases. On the other hand. some very basic growth mechanisms. such as
random aggregation or diffusion limited aggregation, build a fractal geometry
so that rhe existence of a fracral aspect in the geometry of irregular materials
cannot be considered as exceptional [6.3]. Several chapters of this book discuss
the growth of fracral objects.

Several papers have been published on the relation between heterogeneous
reactions and fractality (sce [6.89 -94] and references therein). We present here
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a few simple ideas on that matter. In many cases the catalytic activity A of a
catalyst particle of size L obeys a power law

A~ Lir (6.42)

where dp is called the reaction dimension. Values of dr ranging from 0.2 to
5.8 have been quoted, but in practice they range from 1 to 3 [6.91,92]. A very
simple way to interpret dg is the notion of active sites, This idea stresses that
on a given surface only specific sites are active for catalysis. Suppose that the
grain shape is cubic but only the corners of the cube are active for catalysis.
Then two grains of different sizes have the same number of active sites and
dr = 0.

If the active sites are located on the edges of the cube the activity is propor-
tional to L and dr = 1. If the faces of the cube are active, dp = 2. Experimental
values of dg < 2 may indicate that only a fractal subset of the surface is active.
Experimental values of dg > 2 may indicate that the catalyst itself has a fractal
geometry.

If all sites are active then the activity is proportional to the mass, 4 ~ L%s
and dy = dg. These ideas apply if the reactants are present evenly on the
catalytic sites, i.e., if the diffusion of reacting species from the source of reactant
to the active surface is infinitely fast.

This may not be true and there are many situations where the diffusion of
reactants to the active surface (or its active sites) is too slow and so controls
the reaction kinetics. Such a process is called an Eley-Rideal mechanism. A
third situation exists where the two reactants are on the surface and have to
meet after diffusion onto the surface to react. This last mechanism is called

the Langmuir-Hinshelwood mechanism. It has specific properties on fractal
catalysts. For example. segregation of reacrants may appear. This is discussed
in [6.39].

Our purpose here is only to show that the results we have described for diffu-
sion to membranes can be transposed to the case of the Eley-Rideal mechanism
for heterogeneous catalysis [6.95]. Consider for instance a, gas—solid catalysis in
the simple case of the reaction

A+ B — AB. (6.43)

Normally in a homogeneous phase the reaction rate is

d[AB]
t

= K[A][B]. (6.44)

In such a case the reaction rate is directly proportional to the first power of
the concentration (or pressure) of 4 and B. The sum of these exponents is 2
and the reaction is said to be second order. It is observed that a large num-
ber of heterogencous reactions follow fractional-order kinetics under different
experimental conditions. We show here that the above diffusion scheme gives
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rise to that result. Let us consider a case where the efficient reaction process
takes place on the surface after adsorption of B atoms. The first step for the

reaction is then
Bgas = Bads» (645)

from which the reaction

Agas + Bags — ABjas (6.46)

follows. If the chemical reaction is slow, as in the case of a poor catalyst, the
diffusion from the exterior to the walls of the catalyst is accomplishéd by a
small concentration gradient, and the concentration throughout is nearly the
same as the external concentration. Fast reactions, however, may take place in
the pores very near the exterior, and the internal pore surfaces contribute little.
If the activity of the entire surface of the catalyst is compared (if diffusion were
infinitely rapid), it is usual for the effectiveness of a poor catalyst to be high
and that of an excellent catalyst to be low. Diffusion into the pores involves a
decrease in the concentration of the diffusing reactants, and the concentration
effective in promoting the chemical reaction at the active sites is everywhere
less than if diffusion were not involved. The catalyst, therefore, is less effective
than if all the surface were in contact with the reactants at the concentrations
maintained in the external or ambient fluid. This loss of catalyst effectiveness
due to diffusion is the subject of very many publications. _

In general, diffusion within the pores may be ordinary molecular diffusion,
Knudsen diffusion, surface diffusion, or a combination of all three. We restrict
ourselves here to the consideration of molecular diffusion and we discuss in
some detail the equations which describe the population of adsorbed B atoms
(Bads]- Without chemical reaction the surface concentration varies by adsorp-
tion of molecules from the gas and desorption from the surface, and the rate of
absorption is equal to the net ux

-dl%t*—] = @,(B) = Wa[Byas] = Wi [Baa, (6.47)
where [Bgas] is the local partial concentration or partial pressure near the sur-
face and W, and 1Wp are the probability per unit time for adsorption and
desorption. In the case where reaction (6.46) takes place there is an additional
decrease due to the reaction rate proportional to [A] and to [Bads]- Consequently

(l{Bzuls}
dt

where K¢ is the reaction coefficient. The steady-state local concentration on

= Wa[Byas] = Wo [Buue) = K5 [A4][Buas]. (6.48)

the surface is
3! v.~1 [BgnsJ

Bu; — e T e T e
[Baa] Mo + Ag[A]

(6.49)
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The net flux (6.47) to the surface is simply

 W4Ks (4] [Bgas|

Ou(B) = 5~ o] (6.50)

This equation is analogous to (6.36) if we replace W by WaKs[A]/(Wp +
K[A]). The catalytic problem is then exactly identical to the membrane prob-
lem with the same geometry. A self-affine Sierpinski geometry could be a model
for a porous catalyst with hierarchical pore structure on which the reactants are
kept at a constant concentration at the entry of the pores. One can then use rela-
tion (6.16) or its equivalent for diffusion, which is ¥, ~ a{ =" L(271-1) pi-mpyn,
If a given partial pressure [Boy; of B exists outside the porous system, the net
production of AB is the total flux

d[AB] (2=m) 7 (2n—1) /1-n WaKs[A] \"
7 ay L D ————WD KA [Blext - (6.51a)

Note that this “fractal” speed of reaction is not a linear function of the mi-
croscopic sticking probability W,. Note also that D is the diffusion coefficient
of B in A. If B is diluted in A, D is for normal pressures inversely propor-
tional to the concentration or pressure of A. Finally, the rate of reaction will
be proportional to

dlAB]  a-nyan-1)r 1en [ WaKs[4] )n .
_d_z— ~ Qg L {A] mj/ [B}ext- (Gle)

We have thus presented a model of a catalytic reaction on a fractal surface
with a noninteger reaction rate. If 11, <« K ¢[A] (high pressure) the reaction
order is . If Wp > Ks[A4] (low pressure) the reaction order is 2n. The speed of
reaction is a noninteger power-law function of the parameters I, and ay which
desceribe the macroscopic sizes of the catalyst grain. Although the modified
Sierpinski geometry is artificial. it brings to light the idea that reaction order
and reaction dimension could be related through simple relations in specific
Cases.

For a self-similar catalyst one would also find a noninteger order of reaction
but the reaction dimension will be equal to 2 from (6.39). For reactions and
transport on fractals. see also Chap. 3.
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6.8 Summary

This chapter has briefly presented what was known at the end of 1994 about
two different but partially related problems: the relation between fractality and
the response of irregular electrodes, and the general question of the response
of irregular interfaces to Laplacian fields. As these problems have been the
subject of several conflicting (or apparently conflicting) results it seems useful
to discuss the actual situation.

Let us first consider this situation from the point of view of electrochem-
istry. The first problem itself can be considered in two ways: First, do fractal
electrodes exhibit CPA behavior and how? As we have seen, fractality will gen-
erally lead to CPA and the answer to the first part is “yes” and this can be
considered as sufficiently documented.

The second, different way is to ask: to what extent can experimental CPA
behavior of rough or irregular electrodes be related to fractality? The answer
to this question depends on the system. As we have mentioned, a suitable
distribution of microscopic parameters could also explain (and contribute to)
CPA. In a discussion of porous platinum electrodes, T. Pajkossy has shown that
in this specific case microscopic effects are really the source of CPA behavior.
Generally speaking, there exist two main objections to fractality as a general
explanation for CPA:

1. Fractality leads to Cole-Davidson [6.96] behavior (of the form Y (w) ~
(1+j~wT)" as indicated from relation (6.25a)), whereas experimental CPA
arc often of the Cole-Cole form Y (w) ~ 1 + (jywT)".

2. The frequency range of experimental CPA is often very large, exceeding
the range (L/¢){4 ~1 that one can expect.

Also. fractal CPA can hold only for objects in which the length |A(w)| = 1/pyw
is larger than the smaller cut-off and smaller than the perimeter. This condition
will not be met for rough electrodes (with irregularities in the 10 micron range)
in concentrated liquid electrolytes. In contrast. this condition is met for larger
clectrodes with irregularitics on the mm or em range or in solid electrolytes
(where p is smaller).

The conclusion is that geometrical fractality although leading to CPA can-
not be used exclusively as the “gencral” explanation for experimental CPA
without checking for the above physical conditions. One should also recall that
there exist several electrochemical regimes (diffusion + faradaic or diffusion +
resistive as discussed in {6.55] for Sierpinski electrodes) for which no general
prediction exists for self-similar electrodes. Also. in the real world both micro-
scopic and geometrical macroscopic effects will probably exist simultancously.
(This was the case in the experiments described in [6.74.76].) For this very rea-
so1. exponents alone are not sufficient to ascertain a fractal model. One should
check the compatibly of the measurements with relations (6.26-28).
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Even more important for the future are the simple results that we have ob-
tained on the general question of the response of irregular interfaces to Lapla-
cian fields. There are three main results:

L. It is possible to find the (linear) response of an irregular interface from its
image through an appropriate coarse-graining process.

2. It is a reasonable approximation to consider that there exists a homoge-
neously active zone and a totally passive zone [6.69,83,84]. In this simpli-
fying approximation it is possible to deal simply with nonlinear responses
[6.69]. '

3. The semiquantitative agreement between the anatomical and physioiogical
data and the expressions that we predict for the “best possible acinus”
seems to indicate that the design for the oxygen exchanger in the lung
of several animals is optimized. The statement that for the optimized sit-
uation the value of the classical admittance of the fractal membrane is
equal to the access admittance is very simple. It may thus apply to many
situations which are not “simply” fractal.

This brings out the idea of a “perfect exchanger” or “smart filter”. One should
note that the lung is a simple gas exchanger in the sense that only two gases
are exchanged, oxygen and carbon dioxide. (They have approximately the same
A.) If one considers the transfer of several species with very different transport
parameters, the simultaneous optimization of the transfer should imply that
different As should correspond to the same morphology. This cannot be real-
ized by an homogeneous membrane. An optimized fractal multi-species filter or
exchanger membrane system could nevertheless be realized by a suitable dis-
tribution of specific pores (permeable o specific species) on the membrane. In
that sense it is possible that the micro-geometry of the distribution of specific
cells (or of cells with active transfer) in inhomogeneous membranes permits the
optimization of the transfer of very different species in the same organ. These
notions could possibly lead to a better understanding of the morphology and
physiology of complex exchangers or filters such as the kidney.
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